Research on Deep Learning Individual Tree Segmentation Method Coupling RetinaNet and Point Cloud Clustering

نویسندگان

چکیده

Increasing human activities have caused serious disturbance to global forest resources, so how accurately identify individual trees has become an important task of resources investigation. In order get the accurate number trees, this paper took coniferous and mixed broad-leaved as experimental samples, well Digital Orthophoto Map airborne LiDAR Point Cloud research data. We propose a deep Learning tree segmentation method based on RetinaNet model PCS algorithm by doing comparative analysis (classical Watershed Algorithm Layer Stacking Algorithm) at plots (with high, medium, low densities). The results show that proposed in can solve problem high density improve its degree automation. Compared with stacking algorithm, F-Measure is improved 6%-29% 7%-20%, respectively. other words, presented not only precision segmentation, but also maintain detection rate, which meet accuracy efficiency extraction, needs for modern forestry

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Learning for Point-Cloud Motion Segmentation

Segmenting a moving foreground (fg) from its background (bg) is a fundamental step in many Machine Vision and Computer Graphics applications. Nevertheless, hardly any attempts have been made to tackle this problem in dynamic 3D scanned scenes. Scanned dynamic scenes are typically challenging due to noise and large missing parts. Here, we present a novel approach for motion segmentation in dynam...

متن کامل

Deep Learning on Point Sets for 3D Classification and Segmentation

Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of point...

متن کامل

A Sensitivity analysis for a novel individual tree segmentation algorithm using 3D lidar point cloud data

LiDAR sampling or full-area coverage is deemed as favorable means to achieve timely and robust characterizations of vertically distributed forest attributes. So far, two main strategies on the use of LiDAR data in forestry are reported: area-based method (ABA) and individual tree method (ITC). Recently, a novel 3D segmentation approach has been developed for extracting single trees from LIDAR d...

متن کامل

Unstructured Point Cloud Semantic Labeling Using Deep Segmentation Networks

In this work, we describe a new, general, and efficient method for unstructured point cloud labeling. As the question of efficiently using deep Convolutional Neural Networks (CNNs) on 3D data is still a pending issue, we propose a framework which applies CNNs on multiple 2D image views (or snapshots) of the point cloud. The approach consists in three core ideas. (i) We pick many suitable snapsh...

متن کامل

CRF Based Point Cloud Segmentation

Since devices to capture point clouds easily are relatively recent (Kinect), there has not been much research into segmenting out objects from a point cloud. Previous work in the segmentation of 3d point cloud scenes has usually involved the extracting geometric primitives using features like normals and curvatures [2, 3]. Other research has focused on segmenting out a single object foreground ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3111654